

REST API
For Mediant Devices

Version 1.0
August 2017

Document # LTRT-41761

Session Border Controllers (SBC)

Multi-Service Business Routers (MSBR)

VoIP Analog & Digital Media Gateways

REST API Contents

Mediant Devices 1 REST API

Table of Contents
1 Overview .. 3

2 Authentication and Session Establishment .. 5

3 Top-Level Folder ... 7

4 Navigation Tree ... 9

5 Actions ... 11

5.1 Reset Device .. 12
5.2 Save Configuration ... 13

6 Files .. 15

6.1 INI File .. 16
6.1.1 Full INI File ...16
6.1.2 Incremental INI File ..17

6.2 CLI Script ... 18
6.2.1 Full CLI Script ..18
6.2.2 Incremental CLI Script ...19

6.3 Software Load .. 20
6.3.1 Hitless Software Upgrade ..21

6.4 Auxiliary Files ... 22

7 Alarms .. 23

7.1 Active Alarms ... 24
7.1.1 Specific Active Alarm ...26

7.2 History Alarms .. 27
7.2.1 Specific History Alarm ..28

8 Device Status ... 29

9 Performance Monitoring ... 31

9.1 Specific Performance Monitor ... 32

10 License Management .. 35

11 Supported HTTP Responses .. 37

 Mediant Devices

REST API 2 Document #: LTRT-41761

This page is intentionally left blank.

REST API Notices

Mediant Devices 1 REST API

Notice
Information contained in this document is believed to be accurate and reliable at the time of
printing. However, due to ongoing product improvements and revisions, AudioCodes cannot
guarantee accuracy of printed material after the Date Published nor can it accept responsibility
for errors or omissions. Before consulting this document, check the corresponding Release
Notes regarding feature preconditions and/or specific support in this release. In cases where
there are discrepancies between this document and the Release Notes, the information in the
Release Notes supersedes that in this document. Updates to this document and other
documents as well as software files can be downloaded by registered customers at
http://www.audiocodes.com/downloads.

© Copyright 2017 AudioCodes Ltd. All rights reserved.

This document is subject to change without notice.

Date Published: August-06-2017

Trademarks
AudioCodes, AC, AudioCoded, Ardito, CTI2, CTI², CTI Squared, HD VoIP, HD VoIP
Sounds Better, InTouch, IPmedia, Mediant, MediaPack, NetCoder, Netrake, Nuera, Open
Solutions Network, OSN, Stretto, TrunkPack, VMAS, VoicePacketizer, VoIPerfect,
VoIPerfectHD, What’s Inside Matters, Your Gateway To VoIP and 3GX are trademarks or
registered trademarks of AudioCodes Limited. All other products or trademarks are
property of their respective owners. Product specifications are subject to change without
notice.

WEEE EU Directive
Pursuant to the WEEE EU Directive, electronic and electrical waste must not be disposed
of with unsorted waste. Please contact your local recycling authority for disposal of this
product.

Customer Support
Customer technical support and services are provided by AudioCodes or by an authorized
AudioCodes Service Partner. For more information on how to buy technical support for
AudioCodes products and for contact information, please visit our Web site at
www.audiocodes.com/support.

Abbreviations and Terminology
Each abbreviation, unless widely used, is spelled out in full when first used. Device refers
to SBC and gateway.

Documentation Feedback
AudioCodes continually strives to produce high quality documentation. If you have any
comments (suggestions or errors) regarding this document, please fill out the
Documentation Feedback form on our Web site at http://www.audiocodes.com/downloads.

http://www.audiocodes.com/downloads
http://www.audiocodes.com/support
http://www.audiocodes.com/downloads

 Mediant Devices

REST API 2 Document #: LTRT-41761

This page is intentionally left blank.

REST API 1. Overview

Mediant Devices 3 REST API

1 Overview
The REST API is designed for developers who wish to programmatically integrate the
Mediant Gateway or SBC device into their solution and for administrators who wish to
perform management and configuration tasks via automation scripts.
The REST API provides access to the resources via pre-defined URL paths. Each resource
represents specific device configuration element, state object or maintenance action.
The REST API uses standard HTTP/1.1 protocol. For enhanced security it is
recommended to secure the traffic via the use of HTTPS transport layer.
Standard HTTP methods – GET, PUT, POST and DELETE – are used to read the
resource’s state and to create/update/delete the resources (wherever applicable).
Resource state is described in JSON format and included in the HTTP request or response
bodies.

REST API 4 Document #: LTRT-41761

 Mediant Devices

This page is intentionally left blank.

REST API 2. Authentication and Session Establishment

Mediant Devices 5 REST API

2 Authentication and Session
Establishment
The REST API is accessible via HTTP/HTTPS protocol at /api/v1 prefix.

Example
GET http://10.4.219.62/api/v1/status

HTTP/1.1 200 OK
Content-Type: application/json
{
 "localTimeStamp": "2010-01-17T17:29:15.000Z",
 "ipAddress": "10.4.219.62",
 "subnetMask": "255.255.0.0",
 "defaultGateway": "10.4.0.1",
 "productType": "Mediant SW",
 "versionID": "7.00A.018.005",
 "protocolType": "SIP",
 "operationalState": "UNLOCKED",
 "highAvailability": "Stand Alone"
}

Each REST request must be authenticated using HTTP Basic Authentication. Provided
credentials should correspond to a valid device user with the Security Administrator
privilege level.

Note: It is strongly recommended to use the HTTPS transport layer when accessing the
REST API to mitigate security risks.

REST API 6 Document #: LTRT-41761

 Mediant Devices

This page is intentionally left blank.

REST API 3. Top-Level Folder

Mediant Devices 7 REST API

3 Top-Level Folder
The /api URL serves as a root folder for accessing the REST API.

URL
/api

HTTP Method
GET

HTTP Response
200 OK

Example
GET /api

HTTP/1.1 200 OK
Content-Type: application/json
{
 "versions": [
 {
 "id": "v1",
 "status": "stable",
 "url": "/api/v1"
 }
]
}

REST API 8 Document #: LTRT-41761

 Mediant Devices

This page is intentionally left blank.

REST API 4. Navigation Tree

Mediant Devices 9 REST API

4 Navigation Tree
The /api/v1 URL displays the complete navigation tree that is supported by the REST
API. This tree is displayed below:
/api/v1
 /actions
 /reset // reset the device
 /saveConfiguration // save configuration to NVRAM
 /files // files upload/download
 /ini
 /ini/incremental
 /software
 /cliScript
 /cliScript/incremental
 /...
 /alarms
 /active // active alarms
 /history // history alarms
 /license // license management
 /performanceMonitoring // performance monitoring
 /status // device status

URL
/api/v1

HTTP Method
GET

HTTP Response
200 OK

Example
GET /api/v1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "items": [
 {
 "id": "actions",
 "description": "Device actions",
 "url": "/api/v1/actions"
 },
 {
 "id": "alarms",
 "description": "Device alarms",
 "url": "/api/v1/actions"

REST API 10 Document #: LTRT-41761

 Mediant Devices

 },
 {
 "id": "files",
 "description": "Upload and download of
configuration files",
 "url": "/api/v1/files"
 },
 {
 "id": "license",
 "description": "License management",
 "url": "/api/v1/license"
 },
 {
 "id": "performanceMonitoring",
 "description": "Performance monitoring",
 "url": "/api/v1/performanceMonitoring"
 },
 {
 "id": "status",
 "description": "Device status",
 "url": "/api/v1/status"
 },
]
}

REST API 5. Actions

Mediant Devices 11 REST API

5 Actions
The /actions URL provides the ability to perform maintenance actions on the device.

URL
/api/v1/actions

HTTP Method
GET

HTTP Response
200 OK

Example
GET /api/v1/actions

HTTP/1.1 200 OK
Content-Type: application/json
{
 "actions": [
 {
 "id": "reset",
 "description": "Reset device",
 "url": "/api/v1/actions/reset"
 },
 {
 "id": "saveConfiguration",
 "description": "Save device configuration to
NVRAM",
 "url": "/api/v1/actions/saveConfiguration"
 },
]
}

REST API 12 Document #: LTRT-41761

 REST API

5.1 Reset Device
The /actions/reset URL performs a device reset.

URL
/api/v1/actions/reset

HTTP Method
POST

Supported JSON Attributes

Attribute Type Value Description

saveConfiguration Boolean true Store current configuration before reset (default).

false Do not store current configuration.

gracefulTimeout Number 0 Perform reset immediately (default).

1 Wait for all calls to finish, and then perform reset.

<sec> Wait for specified time (in seconds) for calls to finish,
and then perform reset.

HTTP Responses
 200 OK

 400 Bad request – provided attributes or values are incorrect.
 409 Conflict – reset can’t be performed due to current device state (e.g.

synchronization with the redundant device is in progress).

Example
POST /api/v1/actions/reset
Content-Type: application/json
{
 "saveConfiguration": true,
 "gracefulTimeout": 0
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Device will reset now"
}

or

HTTP/1.1 409 Conflict
Content-Type: application/json
{

REST API 5. Actions

Mediant Devices 13 REST API

 "description": "Device is currently performing HA
synchronization"
}

5.2 Save Configuration
The /actions/saveConfiguration URL saves the device configuration to the
non-volatile memory so that it’ll be preserved if the device reboots or is powered down.

URL
/api/v1/actions/saveConfiguration

HTTP Method
POST

HTTP Responses
 200 OK

 409 Conflict – configuration can’t be save due to current device state.

Example
POST /api/v1/actions/saveConfiguration

HTTP/1.1 200 OK

REST API 14 Document #: LTRT-41761

 REST API

This page is intentionally left blank.

REST API 6. Files

Mediant Devices 15 REST API

6 Files
The /files URL provides access to the various device configuration files.
The PUT method is used to modify the specific configuration file.
The GET method is used to get the specific configuration file (for files which support this
method).

URL
/api/v1/files

HTTP Method
GET

HTTP Response
200 OK

Example
GET /api/v1/files

HTTP/1.1 200 OK
Content-Type: application/json
{
 "files": [
 {
 "id": "ini",
 "description": "INI configuration file",
 "url": "/api/v1/files/ini"
 },
 {
 "id": "software",
 "description": "Software load",
 "url": "/api/v1/files/software"
 },
 {
 "id": "cliScript",
 "description": "CLI configuration script",
 "url": "/api/v1/files/cliScript"
 },
 ...
]
}

REST API 16 Document #: LTRT-41761

 REST API

6.1 INI File
The INI file is the main device configuration file.

6.1.1 Full INI File
The /files/ini URL provides the ability to upload or download an ini configuration file.
Uploading of an ini file triggers device reset to activate the new configuration. Use
/files/ini/incremental (see Section 6.1.2) to apply a partial configuration that
doesn’t require device reset.

URL
/api/v1/files/ini

HTTP Method
GET, PUT

Content Type
application/octet-stream

HTTP Responses
 200 OK

 400 Bad request - provided ini file is incorrect.
 409 Conflict – ini file can’t be loaded due to the current device state (e.g.

synchronization with the redundant device is in progress).

Example
GET /api/v1/files/ini

HTTP/1.1 200 OK
Content-Type: application/octet-stream
<INI file>

Example
PUT /api/v1/files/ini
Content-Type: application/octet-stream
<INI file>

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Device will reset now to activate new
configuration"
}

or

REST API 6. Files

Mediant Devices 17 REST API

HTTP/1.1 409 Conflict
Content-Type: application/json
{
 "description": "Device is currently performing HA
synchronization"
}

Note: The uploaded file gets transformed by the device; therefore the file content will
differ when you download it.

6.1.2 Incremental INI File
The /files/ini/incremental URL provides the ability to upload an incremental
(partial) ini file that can be applied to the device without reset.

URL
/api/v1/files/ini/incremental

HTTP Method
PUT

Content Type
application/octet-stream

HTTP Responses
 200 OK

 400 Bad request - provided ini file is incorrect.
 409 Conflict – ini file can’t be loaded due to the current device state (e.g.

synchronization with the redundant device is in progress).

Example
PUT /api/v1/files/ini/incremental
Content-Type: application/octet-stream
<INI file>

HTTP/1.1 200 OK

REST API 18 Document #: LTRT-41761

 REST API

6.2 CLI Script
The CLI configuration script is an alternative method (to the ini file) for detailing the device
configuration.

6.2.1 Full CLI Script
The /files/cliScript URL provides the ability to upload or download a CLI
configuration script. Uploading of a CLI script triggers device reset to activate the new
configuration. Use /files/cliScript/incremental (see Section 6.2.2 6.2.2) to apply
a partial configuration that doesn’t require device reset.

URL
/api/v1/files/cliScript

HTTP Methods
GET, PUT

Content Type
application/octet-stream

HTTP Responses
 200 OK

 400 Bad request - provided CLI script is incorrect.
 409 Conflict – CLI script can’t be loaded due to the current device state (e.g.

synchronization with the redundant device is in progress).

Example
GET /api/v1/files/cliScript

HTTP/1.1 200 OK
Content-Type: application/octet-stream
<CLI script>

Example
PUT /api/v1/files/cliScript
Content-Type: application/octet-stream
<CLI script>

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Device will reset now to activate new
configuration"
}

or

REST API 6. Files

Mediant Devices 19 REST API

HTTP/1.1 409 Conflict
Content-Type: application/json
{
 "description": "Device is currently performing HA
synchronization"
}

Note: The uploaded file gets transformed by the device; therefore the file content will
differ when you download it.

6.2.2 Incremental CLI Script
The /files/cliScript/incremental URL provides the ability to upload an
incremental (partial) CLI script to apply to the device without reset. The script may contain
both configuration and query commands. Output of the script will be returned in the
response.

URL
/api/v1/files/cliScript/incremental

HTTP Method
PUT

Content Type
application/octet-stream

HTTP Responses
 200 OK

 400 Bad request – provided CLI script is incorrect.
 409 Conflict – CLI script can’t be loaded due to current device state (e.g.

synchronization with the redundant device is in progress).

Example
PUT /api/v1/files/cliScript/incremental
Content-Type: application/octet-stream
<show system uptime>

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Incremental CLI script file was loaded",

"output": "Uptime: 1 days, 0 hours, 36 minutes, 40 seconds"
}

REST API 20 Document #: LTRT-41761

 REST API

6.3 Software Load
The /files/software URL provides the ability to modify the device software load.
Uploading of the software load triggers a device reset to activate it.

URL
/api/v1/files/software

HTTP Method
PUT

Content Type
application/octet-stream

HTTP Responses
 200 OK

 400 Bad request – provided software load is incorrect.
 409 Conflict – software load can’t be applied due to the current device state (e.g.

synchronization with the redundant device is in progress).

Example
PUT /api/v1/files/software
Content-Type: application/octet-stream
<software load>

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Device will reset now to activate new
software load"
}

or

HTTP/1.1 409 Conflict
Content-Type: application/json
{
 "description": "Device is currently performing HA
synchronization"
}

REST API 6. Files

Mediant Devices 21 REST API

6.3.1 Hitless Software Upgrade
The /files/software/hitless URL provides the ability to upgrade the software load
on an HA system via the “hitless” procedure (without service interruption).

URL
/api/v1/files/software/hitless

HTTP Method
PUT

Content Type
application/octet-stream

HTTP Responses
 200 OK

 400 Bad request – provided software load is incorrect.
 409 Conflict – software load can’t be applied due to the current device state (e.g.

synchronization with the redundant device is in progress).

Example
PUT /api/v1/files/software/hitless
Content-Type: application/octet-stream
<software load>

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Device will perform switchover to activate
new software load"
}

or

HTTP/1.1 409 Conflict
Content-Type: application/json
{
 "description": "Device is currently performing HA
synchronization"
}

REST API 22 Document #: LTRT-41761

 REST API

6.4 Auxiliary Files
Auxiliary files can be loaded to the device in a similar manner to the software loading
URLs that are described in Section 6.3. The following auxiliary files are supported:
 /files/amd – answering machine detection
 /files/castable – CAS table.
 /files/codertable – external coders table.
 /files/cpt – call progress tones.
 /files/dialplan – dialing plan.
 /files/prt – pre-recorded tones.
 /files/voiceprompts – voice prompts.

REST API 7. Alarms

Mediant Devices 23 REST API

7 Alarms
The /alarms URL provides the ability to retrieve the device active and history alarms.

URL
/api/v1/alarms

HTTP Method
GET

HTTP Response
200 OK

Example
GET /api/v1/alarms

HTTP/1.1 200 OK
Content-Type: application/json
{
 "alarms": [
 {
 "id": "active",
 "description": "Active alarms",
 "url": "/api/v1/alarms/active"
 },
 {
 "id": "history",
 "description": "History alarms",
 "url": "/api/v1/alarms/history"
 }
]
}

REST API 24 Document #: LTRT-41761

 REST API

7.1 Active Alarms
The /alarms/active URL provides the ability to retrieve active device alarms.

URL
/api/v1/alarms/active

HTTP Method
GET

Supported Parameters

Parameter Type Description

?limit=<value> Number Limits response to a specified number of alarms. Note
that the device may return fewer alarms – e.g. if no
more alarms exist or if the user-specified number is too
large.
Default = 20.

?after=<value> as returned in
previous
response

Returns alarms after the alarm specified by the cursor.
The cursor value should be taken from “cursor”
element in the previous response.

?before=<value> as returned in
previous
response

Returns alarms before the alarm specified by the
cursor (backwards search). The cursor value should be
taken from the “cursor” element in the previous
response.

HTTP Responses
 200 OK

 204 No Content – when no alarms are found

Example
GET /api/v1/alarms/active

HTTP/1.1 200 OK
Content-Type: application/json
{
 "alarms": [
 {
 "id": "1",
 "description": "Trunk is down",
 "url": "/api/v1/alarms/active/1"
 },
 {
 "id": "2",
 "description": "Device will explode in 15 min",
 "url": "/api/v1/alarms/active/2"
 }

REST API 7. Alarms

Mediant Devices 25 REST API

],
 "cursor": {
 "after": "2",
 "before": "-1"
 }
}

The 200 OK response includes the “cursor” structure that includes “before” and “after”
cursors that may be used in consequent requests. Value “-1” indicates than no more
alarms before or after exist.

Example
GET /api/v1/alarms/active?after=2

HTTP/1.1 200 OK
Content-Type: application/json
{
 "alarms": [
 {
 "id": "3",
 "description": "Intrusion detected",
 "url": "/api/v1/alarms/active/3"
 }
],
 "cursor": {
 "after": "-1",
 "before": "3"
 }
}

Example
GET /api/v1/alarms/active?after=3

HTTP/1.1 204 No Content

REST API 26 Document #: LTRT-41761

 REST API

7.1.1 Specific Active Alarm
Use the following URL to retrieve a specific active alarm.

URL
/api/v1/alarms/active/<id>

HTTP Method
GET

HTTP Responses
 200 OK

 404 Not Found – when alarm is not found

Example
GET /api/v1/alarms/active/1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "id": "1",
 "description": "Trunk is down",
 "severity": "Major",
 "source": "Board#1",
 "date": "2010-03-01T23:00:00.000Z",
 "url": "/api/v1/alarms/active/1"
}

REST API 7. Alarms

Mediant Devices 27 REST API

7.2 History Alarms
The /alarms/history URL provides the ability to retrieve device alarms history,
including all alarms raised and cleared by the device since the last reboot.

URL
/api/v1/alarms/history

HTTP Method
GET

Supported Parameters

Parameter Type Description

?limit=<value> Number Limits response to a specified number of alarms. Note
that the device may return fewer alarms – e.g. if no
more alarms exist or if the user-specified number is too
large.
Default = 20.

?after=<value> As returned in
previous
response

Returns alarms after the alarm specified by the cursor.
The cursor value should be taken from the “cursor”
element in the previous response.

?before=<value> As returned in
previous
response.

Returns alarms before the alarm specified by the
cursor (backwards search). The cursor value should be
taken from the “cursor” element in the previous
response.

HTTP Responses
 200 OK

 204 No Content – when no alarms are found

Example
GET /api/v1/alarms/history

HTTP/1.1 200 OK
Content-Type: application/json
{
 "alarms": [
 {
 "id": "1",
 "description": "Trunk is down",
 "url": "/api/v1/alarms/active/1"
 },
 {
 "id": "2",
 "description": "Device will explode in 15 min",
 "url": "/api/v1/alarms/active/2"

REST API 28 Document #: LTRT-41761

 REST API

 }
],
 "cursor": {
 "after": "2",
 "before": "-1"
 }
}

The 200 OK response includes a “cursor” structure that includes “before” and “after”
cursors that may be used in consequent requests. The value “-1” indicates than no more
alarms before or after exist.

7.2.1 Specific History Alarm
Use the following URL to retrieve a specific history alarm.

URL
/api/v1/alarms/history/<id>

HTTP Method
GET

HTTP Responses
 200 OK

 404 Not Found – when alarm is not found

Example
GET /api/v1/alarms/history/1

HTTP/1.1 200 OK
Content-Type: application/json
{
 "id": "1",
 "description": "Trunk is down",
 "severity": "Major",
 "source": "Board#1",
 "date": "2010-03-01T23:00:00.000Z",
 "url": "/api/v1/alarms/history/1"
}

REST API 8. Device Status

Mediant Devices 29 REST API

8 Device Status
The /status URL displays the device status summary.

URL
/api/v1/status

HTTP Method
GET

HTTP Response
200 OK

Example
GET /api/v1/status

HTTP/1.1 200 OK
Content-Type: application/json
{
 "localTimeStamp": "2010-01-17T17:29:15.000Z",
 "ipAddress": "10.4.219.62",
 "subnetMask": "255.255.0.0",
 "defaultGateway": "10.4.0.1",
 "productType": "Mediant SW",
 "versionID": "7.00A.018.005",
 "protocolType": "SIP",
 "operationalState": "UNLOCKED",
 "highAvailability": "Stand Alone"
}

REST API 30 Document #: LTRT-41761

 REST API

This page is intentionally left blank.

REST API 9. Performance Monitoring

Mediant Devices 31 REST API

9 Performance Monitoring
The /performanceMonitoring URL provides access to performance measurements
(PMs) collected by the device. The specific PM names are identical to those used in the
SNMP interface.

URL
/api/v1/performanceMonitoring

HTTP Method
GET

HTTP Response
200 OK

Example
GET /api/v1/performanceMonitoring

HTTP/1.1 200 OK
Content-Type: application/json
{
 "items": [
 "ActiveContextCount",
 "NetUtilKBytes",
 "NetUtilPackets",
 ...
]
}

REST API 32 Document #: LTRT-41761

 REST API

9.1 Specific Performance Monitor
Use the following URL to retrieve the specific PM data.

URL
/api/v1/performanceMonitoring/<pm>

HTTP Method
GET

Supported Parameters

Parameter Type Description

<none> Returns a list of supported PM indexes and intervals.

?index=<value> Number Returns the PM value for the specified index. Value of the index is
PM-dependant – e.g. for IP Group PMs it corresponds to the IP
Group ID. Refer to the SNMP Alarms Guide to determine the index
meaning.
Supported indexes can be discovered by issuing a GET request with
no parameters.

?interval=<value> Number Returns the PM value for the specified interval.
• 0 – current (real-time) value (default)
 1 – average value in last 15 minute interval.
 2 – average value in previous 15 minute interval.
Supported intervals can be discovered by issuing a GET request with
no parameters.

HTTP Responses
 200 OK

 404 Bad Request – when invalid parameters or values are specified.
 404 Not Found – when no PMs are found.

Example
GET /api/v1/alarms/performanceMonitoring/netUtilPackets

HTTP/1.1 200 OK
Content-Type: application/json
{
 "indexes": [0, 1],
 "intervalsPerIndex": [0, 1, 2],
 "lowThreshold": 100,
 "highThreshold": 30000
}

REST API 9. Performance Monitoring

Mediant Devices 33 REST API

Example
GET /api/v1/alarms/performanceMonitoring/netUtilPackets?index=0

HTTP/1.1 200 OK
Content-Type: application/json
{
 "index": 0,
 "interval": 0,
 "value": -1,
 "min": 0,
 "max": 0,
 "average": 0,
 ...
}

Example
GET /api/v1/alarms/performanceMonitoring/netUtilPackets?index=100

HTTP/1.1 400 Bad Request
Content-Type: application/json
{
 "description": "Invalid index",
}

REST API 34 Document #: LTRT-41761

 REST API

This page is intentionally left blank.

REST API 10. License Management

Mediant Devices 35 REST API

10 License Management
The /license URL provides the ability to view and modify the device license key.

URL
/api/v1/license

HTTP Method
GET, PUT

Content Types
 application/json – not supported for HA configurations (see description of supported

attributes below).
 application/octet-stream – supported for all configurations; may include multiple

license keys and the device will apply the relevant key based on the corresponding
serial number. In an HA configuration, the license may be applied to both the active
and redundant devices.

Supported JSON Attributes

Attribute Type Value Description

licenseVersion Number 1 Indicates the license version. Only version 1 is currently
supported.

serialNumber String Indicates the license key serial number. If specified number is
discovered as different to the device’s serial number i.e. a
mismatch is found, the update request is rejected.
Note that this attribute is not mandatory.

key String Indicates the license key in encrypted format.

HTTP Responses
 200 OK

 400 Bad request - provided license key is incorrect.
 409 Conflict – license key can’t be loaded due to the current device state (e.g.

application/json content type is used for HA device).

Example
GET /api/v1/license

HTTP/1.1 200 OK
Content-Type: application/json
{
 "licenseVersion": 1,
 "serialNumber": "277522263687112",
 "key": "jCx6r5tovCIKaBBbhPtT53Yj",
 "keyDescription": "Key features: Board Type: Mediant 800

REST API 36 Document #: LTRT-41761

 REST API

Security: IPSEC MediaEncryption StrongEncryption
EncryptControlProtocol
Coders: G723 G729 G728 NETCODER GSM-FR GSM-EFR AMR EVRC-QCELP
G727 ILBC EVRC-B “
 }

Example
PUT /api/v1/license
Content-Type: application/json
{
 "licenseVersion": 1,
 "serialNumber": "277522263687112",
 "key": "jCx6r5tovCIKaBBbhPtT53Yj"
}

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Device will reset now to activate new
license"
}

or

HTTP/1.1 409 Conflict
Content-Type: application/json
{
 "description": "License key can’t be applied to device in
HA configuration. Use license file instead."
}

Example
PUT /api/v1/license
Content-Type: application/octet-stream
<license file>

HTTP/1.1 200 OK
Content-Type: application/json
{
 "description": "Device will reset now to activate new
software load"
}

REST API 11. Supported HTTP Responses

Mediant Devices 37 REST API

11 Supported HTTP Responses
The following HTTP responses are used by the REST API:
 200 OK – indicates successful request completion.
 201 Created – indicates the creation of a new resource.
 204 No Content – indicates that no items are found in response to a discovery

request.
 400 Bad Request – indicates a request failure due to an invalid input.
 401 Unauthorized – indicates a request failure due to incorrect authentication

credentials.
 403 Forbidden – indicates a request failure due to an authorization failure (i.e.

URL exists; however the user is not authorized to access it).
 404 Not Found – indicates an invalid URL.
 405 Method Not Allowed – indicates that the HTTP method is not supported on

the specific URL/resource.
 406 Not Acceptable – indicates that the client included “Accept:” header in a

request that doesn’t include the format used by the server (for most URLs it’s
“application/JSON”).

 409 Conflict – indicates a failure due to “intermittent” reason (e.g. synchronization
with the redundant device is in progress).

 500 Internal Server Error – indicates an internal failure.

www.audiocodes.com

Mediant REST API

file://Netapp1/Documentation/Shared_Doc/Brad/REST/www.audiocodes.com

	REST API
	Table of Contents
	Notices
	Trademarks
	WEEE EU Directive
	Customer Support
	Abbreviations and Terminology
	Documentation Feedback

	1 Overview
	2 Authentication and Session Establishment
	3 Top-Level Folder
	4 Navigation Tree
	5 Actions
	6 Files
	7 Alarms
	8 Device Status
	9 Performance Monitoring
	10 License Management
	11 Supported HTTP Responses

